: "- ", . - ., . .-. ..


, Web of Science / Scopus, ( 2011 ):

 

1. D.S. Vavilov, D.A. Indeitsev, B.N. Semenov, D.Yu. Skubov (2017) On structural transformations in a material under nonstationary actions. Mechanics of Solids 52( 4): 391–396. DOI: 10.3103/S0025654417040057. (link)

2. V Kozlov, N Kuznetsov (2017) Bounds for solutions to the problem of steady water waves with vorticity. The Quarterly Journal of Mechanics and Applied Mathematics 70(4) 1: 497–518. DOI:10.1093/qjmam/hbx019. (link)

3. V. Kozlov , N. Kuznetsov and E. Lokharu (2017) On the Benjamin–Lighthill conjecture for water waves with vorticity. Journal of fluid mechanics 825: 961-1001. DOI: 10.1017/jfm.2017.361. (link)

4. A. K. Abramian, W. T. van Horssen, S. A. Vakulenko (2017) Oscillations of a string on an elastic foundation with space and time-varying rigidity. Nonlinear Dynamics 88(1) : 567–580. DOI: 10.1007/s11071-016-3261-8. (link)

5. E. V. Shishkina, S. N. Gavrilov (2017) Stiff phase nucleation in a phase-transforming bar due to the collision of non-stationary waves. Archive of Applied Mechanics 87( 6) : 1019–1036. DOI: 10.1007/s00419-017-1228-y. (link)

6. A. Yu. Kuchmin, A. K. Abramyan, Yu. V. Petrov, I. V. Smirnov, A. M. Bragov (2017) Structural-time and pulse characteristics of dynamic fracture of some construction materials. Doklady Physics 62(1): 27–29. DOI: 10.1134/S1028335817010049. (link)

7. V. Kozlov, S. Vakulenko, and U. Wennergren (2017) Biodiversity, extinctions, and evolution of ecosystems with shared resources. Phys. Rev. E 95, 032413. DOI: 10.1103/PhysRevE.95.032413. (link)

8. I. Sudakov, S. Vakulenko,D. Kirievskaya, K. M. Golden (2017) Large ecosystems in transition: Bifurcations and mass extinction. Ecological Complexity 32, Part B: 209-2016. DOI:10.1016/j.ecocom.2017.01.002. (link)

9. I. A. Molotkov, S. A. Vakulenko (2017) An analysis of heat transfer in the solar photosphere and chromosphere. Geomagnetism and Aeronomy 57( 5) : 519–523. DOI: 10.1134/S0016793217050139. (link)

10. D. A. Indeitsev, A. D. Sergeev (2017) Correlation between the properties of eigenfrequencies and eigenmodes in a chain of rigid bodies with torque connections. Vestnik St. Petersburg University, Mathematics 50(2): 166–172. DOI: 10.3103/S1063454117020066. (link)

11. O. Motygin (2017) Numerical approximation of oscillatory integrals of the linear ship wave theory. Applied Numerical Mathematics 115: 99-113. DOI: 10.1016/j.apnum.2017.01.003. (link)

12. D. A. Indeitsev, Yu. A. Mochalova (2017) On the problem of diffusion in materials under vibrations. Mechanics for Materials and Technologies: 183-193. DOI: 10.1007/978-3-319-56050-2_10 (link)

13. D.A. Indeitsev, E.V. Osipova (2017) A two-temperature model of optical excitation of acoustic waves in conductors. Doklady Physics 62( 3) : 136–140. DOI: 10.1134/S1028335817030065. (link)

14. A. S. Blagoveshchensky, A. P. Kiselev (2017) A relation between two simple localized solutions of the wave equation. Computational Mathematics and Mathematical Physics 57(6) : 953–955. DOI: 10.1134/S0965542517060057. (link)

15. D.A. Indeitsev, S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina (2016) Evolution of a trapped mode of oscillation in a continuous system with a concentrated inclusion of variable mass. Doklady Physics 61(12): 620–624. DOI: 10.1134/S1028335816120065 (link)

16. S.N. Gavrilov, Yu.A. Mochalova, E.V. Shishkina (2016) Trapped modes of oscillation and localized buckling of a tectonic plate as a possible reason of an earthquake. Proc.Int. Conf. DAYS on DIFFRACTION 2016: 161–165. DOI: 10.1109/DD.2016.7756834 (link)

17. S.N. Gavrilov, V. A. Eremeyev, G. Piccardo, A. Luongo. (2016) A revisitation of the paradox of discontinuous trajectory for a mass particle moving on a taut string. Nonlinear Dynamics 86(4): 2245-2260. DOI: 10.1007/s11071-016-3080-y (link)

18. E.V. Shishkina, S.N. Gavrilov. (2016) A strain-softening bar with rehardening revisited. Mathematics and Mechanics of Solids 21(2):137-151. DOI : 10.1177/1081286515572247 (link)

19. A. K. Abramyan, S.A. Vakulenko, D. A. Indeitsev (2016) Localized waves in a string of infinite length lying on a damaged elastic base under finitely many impacts. Mechanics of Solids 51(5):583-587. DOI:10.3103/S0025654416050113 (link)

20. Indejtsev D.A., Zhuchkova M.G., Kouzov D.P., Sorokin S.V. (2016) Low-frequency wave propagation in an elastic plate floating on a two-layered fluid. Wave Motion. 62: 98–113. DOI:10.1016/j.wavemoti.2015.12.003 (link)

21. Kuznetsov, N.G., Motygin, O.V.(2016)The three-dimensional problem of the coupled time-harmonic motion of a freely floating body and water covered by brash ice”. Proc. Days on Diffraction 2016:270–276. DOI: 10.1109/DD.2016.7756855 (link)

22. N. Kuznetsov, O. Motygin (2016) On the coupled time-harmonic motion of a freely floating body and water covered by brash ice. J. Fluid Mechanics.795:174–186. DOI: 10.1017/jfm.2016.183 (link)

23. S. Vakulenko (2016) Complex Attractors and Patterns in Reaction–Diffusion Systems. Journal of Dynamics and Differential Equations. DOI:10.1007/s10884-016-9552-4 (link)

24. Denisova, I. V.. (2015) On energy inequality for the problem on the evolution of two fluids of different types without surface tension. J. Math. Fluid Mech., 17(1), 183-198 DOI: 10.1007/s00021-014-0197-y (link)

25.  A.P.Kiselev. (2015) General surface waves in layered anisotropic elastic structures. Mathematical problems in the theory of wave propagation. Part 45, Zap. Nauchn. Sem. POMI, 438, 133–137 (link)

26. V. Kozlov, N. Kuznetsov, E. Lokharu. (2015) On bounds and non-existence in the problem of steady waves with vorticity. J. Fluid Mech., 765 ( R1), 1--13 DOI:10.1017/jfm.2014.747 (link)

27. N. Kuznetsov, O.Motygin. (2015) Freely floating structures trapping time-harmonic water waves . Quart. J. Mech. Appl. Math., 68 173-193 doi: 10.1093/qjmam/hbv003 (link)

28. N.G. Kuznetsov. (2015) On delusive nodal sets of free oscillations. EMS Newsletter, 96 34-41 (link)

29. Kuznetsov, N., (2015) Two-dimensional water waves in the presence of a freely floating body: trapped modes and conditions for their absence . J. Fluid Mech., 779 , 684-700 DOI: 10.1017/jfm.2015.443 (link)

30. O. V., Motygin, (2015) On numerical evaluation of the Heun functions. Proceedings of Int.Conf. Days on Diffraction. IEEE Xplore, 222–227 DOI:10.1109/DD.2015.7354864 (link)

31. N. Kuznetsov,(2015), 333 pages that changed theory of water waves . Notices of the AMS, 62 (10), 1208-1209 (link)

32. G.V. Filippenko.(2015) Axisymmetric vibrations of the semiinfinite cylindrical shell partially submerged into the liquid . Proc. Int. Conf. Days on Diffraction 92–95. DOI: 10.1109/DD.2015.7354839 (link)

33. S.N. Gavrilov, E.V. Shishkina.(2015) A strain-softening bar revisited . Z. Angew. Math. Mech., 95(12),1521-1529 DOI 10.1002/zamm.201400155 (link)

34. E.V. Shishkina, S.N. Gavrilov. (2015) A strain-softening bar with rehardening revisited. Mathematics and Mechanics of Solids ,21(2),137-152 DOI: 10.1177/1081286515572247 (link)

35. S.N. Gavrilov, E.V. Shishkina.(2015) Scale-invariant initial value problems with applications to the dynamical theory of stress-induced phase transformations .Proceedings of the International Conference DAYS on DIFFRACTION 2015. 96-101 DOI: 10.1109/DD.2015.7354840 (link)

36. D.A.Indeitsev, Y.I. Meshcheryakov,A.Y. Kuchmin,, & D. S. Vavilov, (2015). Multi-scale model of steady-wave shock in medium with relaxation. Acta Mechanica, 226(3), 917-930 DOI:10.1007/s00707-014-1231-0 (link)

37. A.K. Abramian, S.A.Vakulenko ,(2015) Destruction of thin films with a damaged substrate as a result of waves localization caused by periodic impact. Proceedings COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering,1,1949-9159 (link)

38. D.A. Indeitsev, Yu .I. Mesheriakov, A. Yu. Kuchmin, D.S. Vavilov. (2014) A Multiscale Model of Propagation of Steady Elasto-Plastic Waves. Doklady Physics. 59( 9), 423-426 DOI: 10.1134/S1028335814090055 (link)

39.  D. A. Indeitsev, D.Yu. Skubov, L. V. Shtukin, D.S. Vavilov. (2014) Unstable constitutive law in continuum mechanics. International J. of Mechancis, 8, 190-194 ISSN: 1998-4448 (link)

40. M.G .Zhuchkova, D.P .Kouzov. (2014) The transmission of a flexural-gravitational wave through several straight obstacles in a floating plate, Journal of Applied Mathematics and Mechanics. 78( 4), 359–366 DOI:10.1016/j.jappmathmech.2014.12.007 (link)

41. D.P. Kouzov, Yu .A .Solov’eva. (2014) Diffraction of a non-stationary linearly inhomogeneous acoustic wave which slides off a semi-infinite soft screen. Journal of Applied Mathematics and Mechanics, 78(5), 681-689 DOI:10.1016/j.jappmathmech.2015.03.007 (link)

42. N.G. Kuznetsov, V. Kozlov , E. Lokharu. Steady water waves with vorticity: an analysis of the dispersion equation. (2014) J. Fluid Mech. 751( R3),1—13 DOI:10.1017/jfm.2014.322 (link)

43. N.G. Kuznetsov, V. Kozlov. (2014). Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents. Arch. Rat. Mech. Anal. 214 (3), 971—1018 DOI: 10.1007/s00205-014-0787-0 (link)

44. A. K. Abramyan ,S.A.Vakulenko. (2014) On oscillations of a beam with a small rigidity and a time-varying mass. Nonlinear Dynamics. 78(1),449-459 DOI: 10.1007/s11071-014-1451-9 (link)

45. A Abramian, S Vakulenko, D Indeitsev, N Bessonov. (2014) Destruction of thin films with damaged substrate as a result of waves localization. . Acta Mechanica 226(2),295-309 DOI: 10.1007/s00707-014-1183-4 (link)

46. D.A. Indeitsev, Yu. I. Meshcheryakov, A. Yu. Kuchmin, D. S. Vavilov. (2014) Multi-scale model of steady-wave shock in medium with relaxation. Acta Mechanica,226(3),917-930 DOI: 10.1007/s00707-014-1231-0 (link)

47. D. Grigoriev J. Reinitz, S. Vakulenko, A. Weber. (2014) Punctuated evolution and robustness in morphogenesis. Biosystems, 123, 106 -113 DOI: 10.1016/j.biosystems.2014.06.013 (link)

48. I. Sudakov , S. A. Vakulenko. (2014)A mathematical model for a positive permafrost carbon–climate feedback. IMA Journal of Applied Mathematics , 80 (3), 1 – 14 DOI: 10.1093/imamat/hxu010 (link)

49. A.K. Abramian, W.T.vanHorssen, S.A. Vakulenko (2013) Nonlinear vibrations of a beam with time-varying rigidity and mass. Nonlinear dynamics, 71 (1): 291-312, doi:10.1007/s11071-012-0661-2 (link)

50. A.K. Abramyan, S.A. Vakulenko, D.A. Indeitsev, B.N. Semenov (2012) Influence of dynamic processes in a film on damage development in an adhesive base. Mechanics of Solids, 47 (5): 498-504, doi:10.3103/S0025654412050020(link)

51. D.A. Indeitsev, A.K. Abramyan, N.M. Bessonov, Yu.A. Mochalova, B.N. Semenov (2012) Motion of the exfoliation boundary during localization of wave processes. Doklady Physics, 57 (4): 179-182, doi:10.1134/S1028335812040106(link)

52. D.A. Indeitsev, M.D. Sterlin (2011) Dynamics of rearrangement of a solid under physicochemical actions. Doklady Physics, 56: 53-57, doi:10.1134/S1028335811010101(link)

53. D.A. Indeitsev, B.N. Semenov, M.D. Sterlin (2012) The phenomenon of localization of diffusion process in a dynamically deformed solid. Doklady Physics, 57 (4): 171-173, doi:10.1134/S1028335812040052(link)

54. D.A. Indeitsev, E.V. Osipova (2011) A statistical model of hydride phase formation in hydrogenated metals under loading. Doklady Physics, 56 (10): 523-526, doi:10.1134/S1028335811100028(link)

55. A.K. Abramyan, N.M. Bessonov, D.A. Indeitsev, Y.A. Mochalova, B.N. Semenov (2011) Influence of oscillation localization on film detachment from a substrate. Vestnik St. Petersburg University: Mathematics, 44 (1): 5-12, doi:10.3103/S1063454111010031(link)

56. A.K. Abramyan, , S.A. Vakulenko (2011) Oscillations of a beam with a time-varying mass. Nonlinear Dynamics, 63 (1): 135-147, doi:10.1007/s11071-010-9791-6(link)

57. V. Kozlov, N. Kuznetsov (2013) No steady water waves of small amplitude are supported by a shear flow with a still free surface. J. Fluid Mech., 717: 523-534., doi:10.1017/jfm.2012.593(link)

58. V. Kozlov, N. Kuznetsov (2013) Steady water waves with vorticity: spatial Hamiltonian structure. J. Fluid Mech., 733: R1, doi:10.1017/jfm.2013.449.(link)

59. N. Kuznetsov, O. Motygin (2012) On the coupled time-harmonic motion of deep water and a freely floating body: trapped modes and uniqueness theorems. Journal of Fluid Mechanics, 703: 142-162, doi:10.1017/jfm.2011.161(link)

60. V. Kozlov, N. Kuznetsov (2012) Bounds for steady water waves with vorticity. Journal of Differential Equat., 252: 663–691, doi:10.1016/j.jde.2011.09.021(link)

61. O. Motygin (2012) On well-posed statements of the three-dimensional ship-wave problem. Quarterly Journal of Mech. and Appl. Math., 65: 389–408, doi:10.1093/qjmam/hbs009(link)

62. N. Kuznetsov, O. Motygin (2011) On the coupled time-harmonic motion of water and a body freely floating in it. Journal of Fluid Mechanics, 679: 616-627, doi:10.1017/jfm.2012.202(link)

63. V. Kozlov, N. Kuznetsov, O. Motygin (2011) On the two-dimensional sloshing problem, Correction. Proc. Roy. Soc. Lond. A (467): 2427-2430, doi:10.1098/rspa.2011.0008(link)

64. T. Kulczycki, N. Kuznetsov (2011) On the `high spots' theorem for fundamental sloshing modes in a trough. Proc. Roy. Soc. Lond. A, 467: 1491-1502, doi:10.1098/rspa.2010.0258(link)

65. V. Kozlov, N. Kuznetsov (2011) The Benjamin-Lighthill conjecture for steady water waves. Arch. Rat. Mech. Anal., 201: 631-645, doi:10.1007/s00205-011-0397-z(link)

66. V. Kozlov, N. Kuznetsov (2011) Steady free-surface vortical flows parallel to the horizontal bottom. Quart. J. Mech. Appl. Math., 64: 371-399, doi:10.1093/qjmam/hbr010(link)

67. O. Motygin, N. Kuznetsov (2011) On the forward motion of an interface-crossing body in a two-layer fluid: the role of asymptotics in problem's statement. J. Engineering Math., 69 (2): 113–134, doi:10.1007/s10665-010-9375-y(link)

68. O.V. Motygin (2011) Trapped modes in a linear problem of the theory of surface water waves. J. Mathematical Sciences. , 173 (6): 717–736., doi:10.1007/s10958-011-0269-y(link)

69. I.V. Denisova, V.A. Solonnikov (2012) Global solvability of a problem governing the motion of two incompressible capillary fluids in a container. Journal of Mathematical Sciences, 185 (5): 668-686., doi:10.1007/s10958-012-0951-8(link)

70. S.N.Gavrilov,G.C.Herman (2012) Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. Journal of Sound and Vibration, 331 (20): 4464–4480., doi:10.1016/j.jsv.2012.05.022(link)

   
 ( )